The Electrical Properties of Calcium Sulfide Doped with Lanthanum Sulfide and Zirconium Sulfide

Gin-ya Adachi,* Nobuhito Imanaka, Mineo Sato, and Jiro Shiokawa Department of Applied Chemistry, Faculty of Engineering, Osaka University, Yamadaoka, Suita, Osaka 565 (Received July 5, 1984)

Calcium sulfides doped with tri- and tetravalent metal sulfides were prepared. Their electromotive forces (EMF) were measured on a galvanic cell(Fe+FeS|Solid Electrolyte|Cu+Cu₂S) where the solid electrolyte was a material in a CaS-Ln₂S₃-MS₂ system. The cell, using calcium sulfide doped with La₂S₃ and ZrS₂, exhibited an EMF value as high as the one calculated for thermodynamical equilibrium. The CaS-La₂S₃-ZrS₂ solid electrolyte showed, predominantly, an ionic conduction in the sulfur pressure range from 10^{-4} to 10^{2} Pa with an activation energy of approximately $56.7 \, \text{kJ} \cdot \text{mol}^{-1}$, which was lower than for CaS and CaS-La₂S₃.

Galvanic cell techniques, applying CaO-stabilized zirconia^{1,2)} and calcium fluoride,³⁻⁷⁾, had been investigated to determine the chemical potentials of sulfur at elevated temperatures. When ZrO₂(CaO) was used as the electrolyte, a metal oxide was formed at the interface of the metal sulfide electrode and the electrolyte, according to the following equilibrium equation:

$$MS(s) + 3/20_2(g) = MO(s) + SO_2(g)$$

It is necessary that the resulting metal oxide is insoluble in the metal sulfide electrode. When CaF₂ was used as the electrolyte, on the other hand, the sulfur chemical potential was first converted to a calcium chemical potential and then to a fluorine chemical potential, where F⁻ anions were mobile species in the CaF₂ solid electrolyte. Therefore, the electromotive force(EMF) became less accurate because of the double chemical potential conversion.

Recently, calcium sulfide⁸⁻¹⁰ has been found to be a Ca²⁺ ionic conductor at elevated temperatures. Otowa et al.⁹ measured the isotope tracer diffusion coefficients of sulfur and proved that the electric charge carrier in the ionic-conductive calcium sulfide is predominantly the Ca²⁺ ions. Attempts¹¹⁻¹⁶ have been concentrated on applying calcium sulfide to a solid electrolyte in order to determine the sulfur chemical potentials. However, calcium sulfide holds several disadvantages. One is its lower electrical conductivity. The other is the presence of a region where electronic conduction cannot be ignored. The doping of a tri-, or tetravalent ion into calcium sulfide¹²⁻¹⁶ has been carried out in order to improve its electrical properties.

In this study, tri- and tetravalent metal sulfides were doped into calcium sulfide so as to increase the Ca²⁺ ion vacancies and to obtain a larger sulfur pressure independent region. EMF measurements were conducted by constructing a galvanic cell (Fe+FeS and Cu+Cu₂S as electrodes) for the purpose of examing the possibilities of the calcium sulfide doped with metal sulfides as an electrolyte. The sulfur pressure dependency on the electrical conductivity were also investigated on a sample with the most promising properties.

Experimental

Materials. Calcium sulfate dihydrate (CaSO₄·2H₂O;

impurity, Chloride: max. 0.003%, Nitrate: max. 0.005%, Heavy metals: 0.001%, Copper: 0.0005%, Lead: 0.0005%, Arsenic: 0.0001%, Iron: 0.001%) was purchased from Wako Pure Chemical Indusries Ltd.. Lanthanum (purity: 99.9%) and yttrium (purity: 99.9%) oxides were secured from Shinetsu Chemical Co. Ltd.. Zirconium (purity: 97%), titanium (purity: 99.5%) and neobium (purity: 99.9%), and wolfram (purity 99.9%) metals were bought from Mitsuwa's Pure Chemicals, and Wako Pure Chemical Industries Ltd., respectively. FeS (Practical Grade) and Cu₂S (purity: 99.99%) were purchased from Wako Pure Chemical Industries Ltd. and Mitsuwa's Pure Chemicals, respectively. Pure calcium sulfide was prepared by heating CaSO₄·2H₂O in a carbon boat at 973 K for 2 h and then at 1273 K for 5 h under a flowing gas atmosphere of hydrogen sulfide (purity: 99%). Lanthanum and yttrium chloride were prepared by adding a diluted hydrochloric acid aqueous solution to La2O3 and Y₂O₃, respectively. Ln₂S₃ (Ln=La and Y) were obtained by heating LnCl₃ (Ln=La and Y) in a carbon boat at 673 K for 2h in an argon gas flowing atmosphere and then at 1273 K for 5 h in an H₂S gas flow. Metal sulfides (M=Zr, Ti, W, and Nb) were prepared by heating a mixture of the metal and sulfur in an evacuated quartz capsule at 773 K for 2h and at 1273 K for 5 h. The CaS, Ln₂S₃ (Ln=La and Y), and MS₂ (M=Zr, Ti, W, and Nb) was thoroughly mixed in an agate mortar. The cation ratio in the CaS-Ln₂S₃-MS₂ system was 96:2:2 for Ca²⁺, Ln³⁺, and M⁴⁺, respectively. The mixture was made into pellets with a pressure of 6.7×108 Pa. Sintering of the pellets was performed for 4h at 1273 K in a flow of hydrogen sulfide gas. The samples were analysed using an X-ray diffraction apparatus (Rigaku's Rotaflex diffractometer with $Cu K\alpha$ radiation). The preparation of the electrodes (Fe+FeS and Cu+Cu2S) was also conducted by sintering the pellets of the metal and metal sulfide (50:50 by molecular weight) for 3 h at 773 K in an argon gas-flow atmosphere.

Measurements. The apparatus for the EMF measurements (galvanic cell technique) is illustrated in Fig. 1. A good contact between the electrolyte and the electrodes was assured by pushing the quartz rod B to the quartz tube A with springs. The electrical conductivity was also measured with the apparatus shown in Fig. 1. In the conductivity measurements, a gold film was deposited on both surfaces of the sample with Shinku Kiko's vacuum-deposition apparatus (ULVAC, VP-C2A) so as to reduce the resistance between the sample and the platinum plate electrodes. The electrical conductivity was measured with a Hewlett Packard vector impedance meter 4800A (from 5 Hz to 500 kHz). The sulfur pressure was controlled by the regulation of the hy-

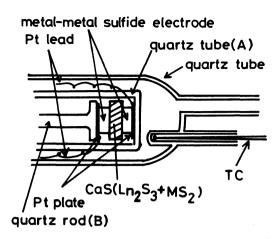


Fig. 1. The apparatus for the EMF and the electrical conductivity measurements.

TABLE 1. THE PROPERTIES OF CaS-Ln₂S₃-MS₂
SOLID ELECTROLYTES

composition (Ca ²⁺ : Ln ³⁺ : M ⁴⁺ EMF/mV ¹⁾ =96:2:2)		invasion of Cu+	Average ionic radius of dopants ²⁾ /nm
CaS-La ₂ S ₃ -ZrS ₂	40	No	0.102
CaS-La ₂ S ₃ -TiS ₂	40	Yes	0.096
CaS-La ₂ S ₃ -WS ₂	0	Yes	0.099
CaS-La ₂ S ₃ -NbS ₂	0	Yes	0.100
CaS-Y ₂ S ₃ -ZrS ₂	40	Yes	0.095
CaS-Y ₂ S ₃ -TiS ₂	11	No	0.089

1) Measured at 973 K. 2) $Ca^{2+}(0.114 \text{ nm})$, $La^{3+}(0.117 \text{ nm})$, $Y^{3+}(0.104 \text{ nm})$, $Zr^{4+}(0.086 \text{ nm})$, $Ti^{4+}(0.0745 \text{ nm})$, $W^{4+}(0.080 \text{ nm})$, $Nb^{4+}(0.082 \text{ nm})$. These ionic radii are cited from the reference.¹⁷

drogen and hydrogen sulfide gas-flow volumes by flow meters. A noninductive resistance furnace was used in order to avoid any noise in both the EMF and conductivity measurements.

Results and Discussion

By X-ray diffraction analysis, samples of CaS-Ln₂S₃ (Ln=La and Y)-MS2 (M=Zr, Ti, W, and Nb) were found to form solid solution. The properties of these solutions are summarized in Table 1. The invasion of the Cu⁺ ion from the Cu-Cu₂S electrode into the solid electrolyte occurred in samples of CaS-La₂S₃-MS₂ (M =Ti, W, and Nb) and CaS-Y₂S₃-ZrS₂. When the CaS-Y₂S₃-TiS₂ sample was employed as a solid electrolyte, the measured EMF was considerably lower than the calculated EMF at 973 K, which is derived from the Gibbs free energy data of Oishi et al.4) and Brooks.18) On the other hand, the cell with calcium sulfide doped with La₂S₃ and ZrS₂ exhibited an EMF as high as the calculated value. In addition, the Cu+ ion invasion from the electrode disappeared. For the CaS-La₂S₃-ZrS₂ electrolyte, the average ionic radius of the dopants was 0.102 nm,17) which is the closest to the ionic radius of Ca2+ (0.114 nm)17) for the three component systems.

A good candidate for a solid electrolyte in the three component systems is considered to be the CaS-

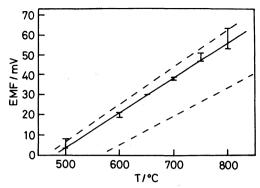


Fig. 2. The temperature dependences of the EMF for Fe+FeS|CaS(2 atom% La₂S₃ and 2 atom% ZrS₂)|Cu+Cu₂S cell.

The maximum and minimum EMF (---) are calculated from the Gibbs free energy data of Oishi et al.⁴⁰ and Brooks,¹⁸⁰ and Alcock and Richardson¹⁹⁰ and Nagamori,²⁰⁰ respectively.

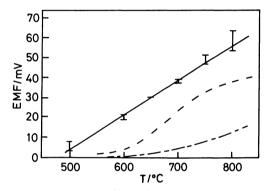


Fig. 3. The temperature dependences of the EMF for Fe+FeS|Solid electrolyte|Cu+Cu₂S cell.

——: CaS(2 atom% La₂S₃ and 2 atom% ZrS₂),

---: CaS(5 atom% La₂S₃), ---: CaS.

La₂S₃-ZrS₂ system.

The EMF results for the CaS-La₂S₃-ZrS₂ electrolyte are presented in Fig. 2. The maximum and minimum EMF were calculated from the Gibbs free energy data of Oishi *et al.*⁴⁾ and Brooks,¹⁸⁾ and Alcock and Richardson¹⁹⁾, and Nagamori,²⁰⁾ respectively. The measured EMF shows itself in well within the calculated EMF range.

A comparison of the EMF results for cells using CaS, CaS-La₂S₃,¹⁵⁾ and CaS-La₂S₃-ZrS₂ systems is shown in Fig. 3. The calcium sulfide in which La₂S₃ was held in a solid solution, exhibited a higher EMF compared with the calcium sulfide alone. This was attributed to the formation of cation vacancies during doping. In the CaS-La₂S₃-ZrS₂ system, the EMF properties were appreciably improved in comparison with both CaS and CaS-La₂S₃.

The sulfur pressure dependency of the electrical conductivity is illustrated in Fig. 4. The conductivities are independent of the sulfur pressure variation for all samples measured at 700, 800, and 900°C. This result indicates that electrical conduction is predominantly ionic in an CaS-La₂S₃-ZrS₂ system. In a previous work,¹¹⁾ it was reported that calcium sulfide exhibits a

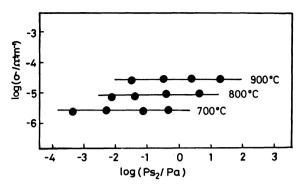


Fig. 4. The variation of the electrical conductivity of CaS(2 atom% La₂S₃ and 2 atom% ZrS₂) with sulfur pressure at 700, 800, and 900 °C.

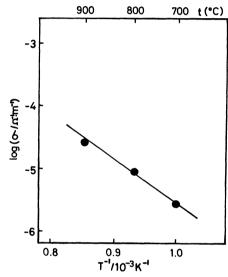


Fig 5. The temperature dependences of the electrical conductivity for CaS(2 atom% La₂S₃ and 2 atom% ZrS₂) under an atmosphere of H₂/H₂S=1.5/1.

P-type conduction at $\log P_{\rm S_2}$ higher than approximately -6. In our earier paper, ¹⁵⁾ electronic conduction was found to appear in the CaS-La₂S₃ system, at $\log P_{\rm S_2}$ lower than about -5.5. By doping La₂S₃ and ZrS₂ simultaneously into CaS, the ionic conduction becomes dominant. The electronic conduction seems to be negligibly small compared with the ionic conduction due to the Ca²⁺ migration.

The temperature dependences of the log σ are shown in Fig. 5. From the slope of the line, the activation energy for the CaS-La₂S₃-ZrS₂ system was calculated to be 56.7 kJ·mol⁻¹. This value is smaller than both 99.6 kJ·mol⁻¹¹¹⁾ for CaS, and 79.9 kJ·mol⁻¹¹⁵⁾ for CaS-La₂S₃.

The migration of a Ca²⁺ ion from a cation site to a cation vacancy becomes easier after increasing the number of cation vacancies.

In conclusion, the EMF characteristics of CaS with Cu+Cu₂S and Fe+FeS electrodes are remarkably improved by the doping of La₂S₃ and ZrS₂ simultaneously into the host CaS. The conduction mechanism of the CaS-La₂S₃-ZrS₂ solid solution is predominantly ionic. The CaS-La₂S₃-ZrS₂ system has the potential of being utilized as a solid electrolyte for a galvanic cell over a large range of sulfur pressures (10⁻⁴ to 10² Pa).

References

- 1) H. R. Larson and J. F. Elliott, Trans. Metall. Soc. AIME, 239, 1713 (1967).
- 2) K. Sadakane, M. Kawakami, and K. Goto, Tetsu to Hagane, 63, 432 (1977).
 - 3) S. Aronson, J. Inorg. Nucl. Chem., 29, 1611 (1967).
- 4) T. Oishi, T. Fujimura, K. Ogura, and J. Moriyama, Nippon Kinzoku Gakkai Shi, 40, 969 (1976).
- 5) K. T. Jacob, D. B. Rao, and H. G. Nelson, J. Electrochem. Soc., 125, 758 (1978).
- 6) T. A. Ramanarayanan and W. L. Worrell, J. Electrochem. Soc., 127, 1717 (1980).
 - 7) W. L. Worrell, Solid State Ionics, 3/4, 559 (1981).
- 8) H. Nakamura and K. Gunji, Nippon Kinzoku Gakkai Shi, 42, 635 (1978); Trans. Jpn. Inst. Met., 21, 375 (1980).
- 9) T. Otowa, M. Kobayashi, K. S. Goto, and M. Someno, Nippon Kinzoku Gakkai Shi, 43, 1181 (1979).
- 10) Von T. L. Wen, W. Weppner, and A. Rabenau, Z. Anorg. Allg. Chem., 497, 93 (1983).
- 11) K. Nagata and K. S. Goto, Metall. Trans., 5, 899 (1974).
- 12) W. L. Worrell, V. B. Tare, and F. J. Bruni, 3rd International Symposium of the High Temperature Technology, Asilomar, California, 1967 Abstr., No. 503.
- 13) K. Ono, K. Ishihara, and J. Moriyama, Nippon Kinzoku Gakkai Shi, 44, 185 (1980).
- 14) K. Ono, T. Oishi, and J. Moriyama, Solid State Ionics, 3/4, 555 (1981).
- 15) M. Sato, N. Imanaka, G. Adachi, and J. Shiokawa, *Mater. Res. Bull.*, **16**, 215 (1981).
- 16) A. Egami, T. Onoye, and K. Narita, Solid State Ionics, 3/4, 617 (1981).
- 17) R. D. Shannon, Acta Crystallogr., Sect. A, 32, 751 (1976).
- 18) A. A. Brooks, J. Am. Chem. Soc., 75, 2464 (1953).
- 19) C. B. Alcock and F. D. Richardson, *Nature*, **168**, 661 (1951).
- 20) M. Nagamori, Metall. Trans., Sect. B, 7B, 67 (1976).